
Populate Your Data
Warehouse with a
Metadata-driven,

Pattern-based
Approach

Meagan Longoria

Consultant at DCAC

Intro

About Me

• Meagan Longoria

• Denver, CO

• Consultant at Denny Cherry & Associates Consulting

• Microsoft Data Platform MVP

• Blogger, Speaker, Author, Technical Editor

• Camper, dog owner

Let’s
define our
buzzwords

What is a pattern-based approach?

Patterns

Instead of “Copy Table A from Database X to
Database Y”

Abstract away the details to create a template:
“Copy any table or query result from one database
to another”

DW
Patterns

Common data warehouse ETL
patterns

Logging

Error Handling

Truncate & Reload

Incremental Load

SCD 1 Load

SCD2 Load

Fact Load

Restartability

Parallel processing

Benefits of a pattern-based approach

Consistency in development and implementation of best practices

Reduced required development time

Less tech debt, implement changes once

Reusable/reduced documentation

Reduced cognitive load for developers and support

File name: IzzyBeach.jpg
File type: JPG
File Size: 4.54 MB
Dimensions: 4640 x 3472
Author: Meagan
Date: 2022-08-23
Location: Long Beach, CA
Camera: Motorola Edge
…

Metadata: data that describes other data

Natural vs synthetic metadata

Natural - exists as an artifact of pre-existing processes and is
machine readable and relatively correct.

Hybrid - Enhances natural metadata, usually through key/value
pairs or other simple relationships

Synthetic - A largely standalone, sometimes complex metadata
store that captures business logic and pattern selection

Natural Hybrid Synthetic

Metadata

Common ETL metadata

File properties

Table schemas (name, columns and data types, etc.)

Self-describing web services

Data catalogs

Tags and annotations (e.g., sensitivity labels)

User-created tables and files

Benefits of metadata-driven ETL

Metadata can act as documentation

Mature implementations can involve data stewards providing
synthetic metadata rather than the ETL developers

As time goes on, you rarely change your pattern and more
frequently change your data

Metadata input changes

Design pattern changes

Make it work with
Azure Data Factory
and Azure SQL

Populating a data warehouse

Data Warehouse: Azure SQL DB

Data Orchestration and Copy: Azure Data Factory

Transformation Engine: SQL

Data Sources:

• Azure SQL Database

• Azure Data Lake Storage

Make it
work

The magic ingredients

Control table - determines what gets
copied/executed

Log table – tracks execution, logs success/failure,
execution times

ADF ForEach activity – Orchestrator for patterns, can
control parallelism

ADF Parameterized pipelines – Accept the metadata
passed from the For Each loop

Demo/tour of my
data mart

Demo/tour of my
data factory

Final comments
and questions

Tips

Don’t make decisions you’ve already made before. Use patterns!

This works with other technologies, including notebooks and
lakehouses.

Determine the appropriate level of abstraction for your projects.

Source control or back up your metadata.

Spend your extra time actually testing your ETL and data!

Automate SQL development using metadata.

Have a
question?

Ask me!

Meagan Longoria

Meagan@dcac.com

DataSavvy.me

@Mmarie (Twitter and Bluesky)

/in/meaganlongoria/

	Slide 1: Populate Your Data Warehouse with a Metadata-driven, Pattern-based Approach
	Slide 2: About Me
	Slide 3: Let’s define our buzzwords
	Slide 4: What is a pattern-based approach?
	Slide 5: Patterns
	Slide 6: Common data warehouse ETL patterns
	Slide 7: Benefits of a pattern-based approach
	Slide 8: Metadata: data that describes other data
	Slide 9: Natural vs synthetic metadata
	Slide 10: Common ETL metadata
	Slide 11: Benefits of metadata-driven ETL
	Slide 12: Make it work with Azure Data Factory and Azure SQL
	Slide 13: Populating a data warehouse
	Slide 14: The magic ingredients
	Slide 15: Demo/tour of my data mart
	Slide 16: Demo/tour of my data factory
	Slide 17: Final comments and questions
	Slide 18: Tips
	Slide 19: Have a question? Ask me!

